1,365 research outputs found

    Quantum Hall Effect on the Flag Manifold F_2

    Full text link
    The Landau problem on the flag manifold F2=SU(3)/U(1)×U(1){\bf F}_2 = SU(3)/U(1)\times U(1) is analyzed from an algebraic point of view. The involved magnetic background is induced by two U(1) abelian connections. In quantizing the theory, we show that the wavefunctions, of a non-relativistic particle living on F2{\bf F}_2, are the SU(3) Wigner D{\cal D}-functions satisfying two constraints. Using the F2{\bf F}_2 algebraic and geometrical structures, we derive the Landau Hamiltonian as well as its energy levels. The Lowest Landau level (LLL) wavefunctions coincide with the coherent states for the mixed SU(3) representations. We discuss the quantum Hall effect for a filling factor ν=1\nu =1. where the obtained particle density is constant and finite for a strong magnetic field. In this limit, we also show that the system behaves like an incompressible fluid. We study the semi-classical properties of the system confined in LLL. These will be used to discuss the edge excitations and construct the corresponding Wess-Zumino-Witten action.Comment: 23 pages, two sections and references added, misprints corrected, version to appear in IJMP

    A Generalized Jaynes-Cummings Model: Nonlinear dynamical superalgebra u(1/1)u(1/1) and Supercoherent states

    Full text link
    The generalization of the Jaynes-Cummings (GJC) Model is proposed. In this model, the electromagnetic radiation is described by a Hamiltonian generalizing the harmonic oscillator to take into account some nonlinear effects which can occurs in the experimental situations. The dynamical superalgebra and supercoherent states of the related model are explicitly constructed. A relevant quantities (total number of particles, energy and atomic inversion) are computed.Comment: 12 page

    Quantum Hall Droplets on Disc and Effective Wess-Zumino-Witten Action for Edge States

    Full text link
    We algebraically analysis the quantum Hall effect of a system of particles living on the disc B1{\bf B}^1 in the presence of an uniform magnetic field BB. For this, we identify the non-compact disc with the coset space SU(1,1)/U(1)SU(1,1)/U(1). This allows us to use the geometric quantization in order to get the wavefunctions as the Wigner D{\cal D}-functions satisfying a suitable constraint. We show that the corresponding Hamiltonian coincides with the Maass Laplacian. Restricting to the lowest Landau level, we introduce the noncommutative geometry through the star product. Also we discuss the state density behavior as well as the excitation potential of the quantum Hall droplet. We show that the edge excitations are described by an effective Wess-Zumino-Witten action for a strong magnetic field and discuss their nature. We finally show that LLL wavefunctions are intelligent states.Comment: 18 pages, clarifications and misprints corrected, version published in IJGMM

    Room equalization based on iterative simple complex smoothing of acoustic impulse responses

    Get PDF
    This paper presents a room equalization method based on iterative simple complex smoothing of measured acoustic impulse responses. This is useful in cases of long duration impulse responses. Corresponding time reduced impulse responses are derived which conform to perceptual principles. The smoothed impulse responses are then used to design equalization filters. Results from an audio-conferencing reverberant room using objective and subjective tests show that we can improve the measured and perceived quality of audio reproduction

    Bipartite and Tripartite Entanglement of Truncated Harmonic Oscillator Coherent States via Beam Splitters

    Full text link
    We introduce a special class of truncated Weyl-Heisenberg algebra and discuss the corresponding Hilbertian and analytical representations. Subsequently, we study the effect of a quantum network of beam splitting on coherent states of this nonlinear class of harmonic oscillators. We particularly focus on quantum networks involving one and two beam splitters and examine the degree of bipartite as well as tripartite entanglement using the linear entropy

    Phase operators, temporally stable phase states, mutually unbiased bases and exactly solvable quantum systems

    Full text link
    We introduce a one-parameter generalized oscillator algebra A(k) (that covers the case of the harmonic oscillator algebra) and discuss its finite- and infinite-dimensional representations according to the sign of the parameter k. We define an (Hamiltonian) operator associated with A(k) and examine the degeneracies of its spectrum. For the finite (when k < 0) and the infinite (when k > 0 or = 0) representations of A(k), we construct the associated phase operators and build temporally stable phase states as eigenstates of the phase operators. To overcome the difficulties related to the phase operator in the infinite-dimensional case and to avoid the degeneracy problem for the finite-dimensional case, we introduce a truncation procedure which generalizes the one used by Pegg and Barnett for the harmonic oscillator. This yields a truncated generalized oscillator algebra A(k,s), where s denotes the truncation order. We construct two types of temporally stable states for A(k,s) (as eigenstates of a phase operator and as eigenstates of a polynomial in the generators of A(k,s)). Two applications are considered in this article. The first concerns physical realizations of A(k) and A(k,s) in the context of one-dimensional quantum systems with finite (Morse system) or infinite (Poeschl-Teller system) discrete spectra. The second deals with mutually unbiased bases used in quantum information.Comment: Accepted for publication in Journal of Physics A: Mathematical and Theoretical as a pape

    Creating mirror-mirror quantum correlations in optomechanics

    Full text link
    We study the transfer of quantum correlations between two movable mirrors of two Fabry-P\'erot cavities separated via broadband squeezed light and coupled via photon hopping process. We investigate the transfer of quantum correlations from EPR entangled squeezed light to the movable mirrors. We show that Gaussian quantum steering remains lower than entanglement. We employ Gaussian quantum steering to characterize the steerability between the two mechanical modes. The logarithmic negativity is used as the witness of quantum entanglement and Gaussian quantum discord gives the measure of all non classical correlations including entanglement. We conclude that the transfer of quantum correlations is optimal for a strong optomechanical coupling and decreases with the thermal effects. We also conclude that steering, entanglement and discord are directly related to photon hopping coupling and the squeezing parameter

    Phase operators, phase states and vector phase states for SU(3) and SU(2,1)

    Full text link
    This paper focuses on phase operators, phase states and vector phase states for the sl(3) Lie algebra. We introduce a one-parameter generalized oscillator algebra A(k,2) which provides a unified scheme for dealing with su(3) (for k < 0), su(2,1) (for k > 0) and h(4) x h(4) (for k = 0) symmetries. Finite- and infinite-dimensional representations of A(k,2) are constructed for k < 0 and k > 0 or = 0, respectively. Phase operators associated with A(k,2) are defined and temporally stable phase states (as well as vector phase states) are constructed as eigenstates of these operators. Finally, we discuss a relation between quantized phase states and a quadratic discrete Fourier transform and show how to use these states for constructing mutually unbiased bases
    • …
    corecore